
1.  Introduction
Over more than two decades, the United States Environmental Protection Agency (U.S. EPA) has led the 
development of the Community Multiscale Air Quality (CMAQ; Byun & Schere, 2006) modeling system to 
inform regulatory decision-making, air quality research, forecasting, and other aspects of air quality science 

Abstract The U.S. EPA (United States Environmental Protection Agency) is leveraging recent 
advances in meteorological modeling to construct an air quality modeling system to allow consistency 
from global to local scales. The Model for Prediction Across Scales-Atmosphere (MPAS-A or MPAS) 
has been developed by the National Center for Atmospheric Research (NCAR) as a global complement 
to the Weather Research and Forecasting model (WRF). Patterned after a regional coupled system 
with WRF, the Community Multiscale Air Quality (CMAQ) modeling system has been coupled within 
MPAS to explore global-to-local chemical transport modeling. Several options were implemented into 
MPAS for retrospective applications. Nudging-based data assimilation was added to support continuous 
simulations of past weather to minimize error growth that exists with a weather forecast configuration. 
The Pleim-Xiu land-surface model, the Asymmetric Convective Model 2 boundary layer scheme, and the 
Pleim surface layer scheme were added as the preferred options for retrospective air quality applications 
with WRF. Annual simulations were conducted using this EPA-enhanced MPAS configuration on two 
different mesh structures and compared against WRF. MPAS generally compares well with WRF over the 
conterminous United States. Errors in MPAS surface meteorology are comparable to WRF throughout the 
year. Precipitation statistics indicate MPAS performs slightly better than WRF. Solar radiation in MPAS is 
higher than WRF and measurements, suggesting fewer clouds in MPAS than WRF. Upper-air meteorology 
is well-simulated by MPAS, but errors are slightly higher than WRF. These comparisons lend confidence 
to use MPAS for retrospective air quality modeling and suggest ways it can be further improved in the 
future.

Plain Language Summary The US EPA analyses and performs research on the past, present 
and future air quality of the United States using the Community Multiscale Air Quality model (CMAQ). 
Historically, the modeling was focused on the U.S. as regulations and impact are first order local issues. 
Global modeling is becoming more attainable and common as computer potential has increased, modeling 
systems advanced and air quality viewed as a global issue. This research demonstrates that we now have 
a meteorological modeling system that is capable of modeling air quality from global to local scales. 
The more comprehensive air quality modeling will directly address research issues on the link between 
air quality and human/ecological health. Specific results presented with this work indicate that the 
meteorology from the new global model is on par with the meteorology we have been using for the last 
decade. This suggests that the global air quality simulations will not be significantly restricted by poor 
driving meteorology and we can move forward with some confidence.

GILLIAM ET AL.

Published 2021. This article is a U.S. 
Government work and is in the public 
domain in the USA.

Establishing the Suitability of the Model for Prediction 
Across Scales for Global Retrospective Air Quality 
Modeling
Robert C. Gilliam1  , Jerold A. Herwehe1  , O. Russell Bullock Jr1  , 
Jonathan E. Pleim1  , Limei Ran1,2, Patrick C. Campbell3,4, and Hosein Foroutan5 

1Center for Environmental Measurements and Modeling, Office of Research and Development, U.S. Environmental 
Protection Agency, Research Triangle Park, NC, USA, 2Natural Resources Conservation Service, United States 
Department of Agriculture, Greensboro, NC, USA, 3Center for Spatial Information Science and Systems/Cooperative 
Institute for Satellite Earth System Studies, George Mason University, Fairfax, VA, USA, 4Department of Atmospheric 
and Oceanic Science/Cooperative Institute for Climate and Satellites-Maryland, University of Maryland, ARL/NOAA 
Affiliate, College Park, MD, USA, 5Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 
USA

Key Points:
•  Pleim-Xiu land-surface model, 

Asymmetric Convective Model 
version 2 (ACM2) planetary 
boundary layer model, and Pleim 
surface layer scheme from the 
Weather Research and Forecasting 
model (WRF) were added as options 
to the Model for Prediction Across 
Scales (MPAS) model

•  Errors over the United States were 
substantially reduced in MPAS by 
using the Pleim-Xiu Land Surface 
Model (P-X LSM), ACM2 and Pleim 
surface layer configuration

•  The magnitude of errors in MPAS 
are comparable to WRF, so MPAS is 
suitable for driving retrospective air 
quality models

Supporting Information:
Supporting Information may be found 
in the online version of this article.

Correspondence to:
R. C. Gilliam,
gilliam.robert@epa.gov

Citation:
Gilliam, R. C., Herwehe, J. A., 
Bullock, Jr, O. R., Pleim, J. E., Ran, L., 
Campbell, P. C., & Foroutan, H. (2021). 
Establishing the suitability of the model 
for prediction across scales for global 
retrospective air quality modeling. 
Journal of Geophysical Research: 
Atmospheres, 126, e2020JD033588. 
https://doi.org/10.1029/2020JD033588

Received 7 AUG 2020
Accepted 24 DEC 2020

Author Contributions:
Conceptualization: Jonathan E. 
Pleim, Hosein Foroutan
Formal analysis: Jerold A. Herwehe, 
Limei Ran, Patrick C. Campbell
Methodology: Jerold A. Herwehe, O. 
Russell Bullock, Jonathan E. Pleim, 
Limei Ran, Patrick C. Campbell, Hosein 
Foroutan
Resources: Limei Ran, Patrick C. 
Campbell

10.1029/2020JD033588
RESEARCH ARTICLE

1 of 22

https://orcid.org/0000-0002-7241-9981
https://orcid.org/0000-0003-4500-6601
https://orcid.org/0000-0003-2476-0162
https://orcid.org/0000-0001-6190-6082
https://orcid.org/0000-0003-4185-3571
https://doi.org/10.1029/2020JD033588
https://doi.org/10.1029/2020JD033588
https://doi.org/10.1029/2020JD033588
https://doi.org/10.1029/2020JD033588


Journal of Geophysical Research: Atmospheres

and application. CMAQ was initially designed to be driven by meteorology from the Mesoscale Model ver-
sion 5 (MM5; Grell et  al.,  1994). It was then adapted for the Weather Research and Forecasting model 
(WRF; Skamarock et al., 2008) around 2007. Part of the adaptation of WRF for CMAQ applications was the 
implementation of four-dimensional data assimilation (FDDA) for retrospective modeling studies (Deng 
et al., 2007). Another key development in WRF was including physics options from MM5 that were tailored 
for air quality (AQ) modeling: The Pleim-Xiu Land Surface Model (P-X LSM), the Asymmetric Convective 
Model version 2 (ACM2) planetary boundary layer (PBL) scheme, and the Pleim surface layer model. This 
specific WRF model configuration–detailed in Gilliam and Pleim  (2010) and Pleim and Gilliam  (2009), 
facilitated the official transition from MM5 to WRF as the primary source of meteorology for CMAQ. This 
WRF configuration has been used extensively for CMAQ developments and applications over the last dec-
ade (Appel et al., 2014, 2017; Foley et al., 2015; Gan et al., 2015; Kang et al., 2020; Matichuk et al., 2017; 
McNider et al., 2018; Pleim et al., 2019; Pye et al., 2015; Xing et al., 2014).

Driven by MM5 or WRF, CMAQ modeling is typically conducted using limited-area, rectilinear grids on 
Lambert conformal or polar stereographic projections, requiring both meteorological and chemical bound-
ary conditions from other models or analysis products. Chemical boundary conditions in CMAQ have ad-
vanced beyond using static background pollution levels to values that vary in time and space, originating 
from global air quality models such as the Goddard Earth Observing System model coupled to chemistry 
(GEOS-Chem; Bey et al., 2001). These global models use different chemical mechanisms and may solve for 
a different set of chemical species than CMAQ, which creates inconsistencies along the domain boundaries 
that introduces more uncertainty. Responding to a need to quantify the impact of global boundary condi-
tions on regional scale air quality models (e.g., Schere et al., 2012; Solazzo, Bianconi, et al., 2017, Solazzo, 
Hogrefe, et al., 2017), Hogrefe et al. (2018) found a substantial difference in CMAQ performance for a lim-
ited-area conterminous United States (CONUS) domain when it was driven by chemical boundaries from 
four different global/hemispheric models. To improve consistency, CONUS simulations with CMAQ have 
begun to use boundary conditions from CMAQ run on hemispheric-scale domains (Mathur et al., 2017; 
Xing et al., 2014). However, a global modeling capability with grid refinement would eliminate the need for 
any lateral boundary conditions.

Global weather modeling has become more standard as technological and scientific advances move the 
science away from limited area regional modeling. For example, the Model for Prediction Across Scales–At-
mosphere (Skamarock et al., 2012; MPAS-A, or MPAS hereafter) is a global complement to WRF. The U.S. 
EPA has a vision of global-to-local-scale air quality modeling using MPAS as the meteorological driver. The 
MPAS mesh refinement capability allows for coarser grid cells over large parts of the globe with gradual 
refinement over a region that is the key focus area like the CONUS in the case of the U.S. EPA. Progress has 
been made on a coupled MPAS-AQ modeling system (Pleim et al., 2018; Wong et al., 2020) where CMAQ 
is called inside the meteorological model driver like a weather-based physics parameterization. The CMAQ 
components are a one-dimensional chemistry column model with all transport performed by the MPAS 
mass-conservative advection routines.

As MPAS-AQ is developed and refined, preparing MPAS for retrospective meteorological modeling has fol-
lowed a parallel track. Initially, the WRF analysis-nudging-based FDDA module was implemented in MPAS 
(Bullock et al., 2018). In this context, FDDA allows for continuous retrospective simulations where errors 
are mitigated by constraining the model toward meteorological analyses. The only alternative for retro-
spective modeling applications aside from 4DVAR, which is computationally prohibitive for most air qual-
ity applications, is running short-term forecasts with frequent reinitialization. The FDDA method analysis 
nudging was first implemented in MM5 by Stauffer and Seaman (1990), Stauffer et al. (1991) and Stauffer 
and Seaman (1994). Otte (2008a, 2008b) evaluated FDDA in MM5 for a CMAQ air quality application. Sub-
sequently, Gilliam and Pleim (2010) was the first documented study comparing the FDDA configuration 
described by Otte (2008a, 2008b) of the MM5 model with a comparable configuration of WRF. Other studies 
such as Otte et al. (2012), Bowden et al. (2012), and Bullock et al. (2014) demonstrated this FDDA method 
as an effective tool to downscale general circulation models to the regional scale.

The next stage in developing MPAS-AQ seeks to further tailor the meteorology simulations for air quali-
ty applications. As was done with the MM5 and WRF (Gilliam & Pleim, 2010), the P-X LSM (Pleim and 
Xiu, 1995, 2003; Xiu & Pleim, 2001), ACM2 PBL scheme (Pleim, 2007a, 2007b), and Pleim surface layer 
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scheme (Pleim, 2006) were implemented in MPAS. Concurrently, the Noah tiled land cover characteriza-
tion parameterization was extended to MPAS (Campbell et al., 2020), where land-surface interactions are 
computed for each land use category in each grid cell and scaled up to a total grid cell value. To test these 
implementations, MPAS simulations for 2016 were evaluated against several observation platforms (sur-
face, upper-air, precipitation and radiation) and compared with a similarly configured, limited-area, WRF 
domain over the CONUS. The goal is to establish confidence in MPAS as the meteorological driver for the 
global retrospective air quality modeling system.

2.  Methods
2.1.  MPAS/WRF Domain and Physics Configurations

In MPAS, the grid refinement allows for smooth transition from coarse mesh for most of the globe to fin-
er mesh over a focal region (such as a country or an urban area). The National Center for Atmospheric 
Research (NCAR), which maintains MPAS, is developing software to construct custom Voronoi meshes. 
While this has not been officially released, we are successfully testing an unreleased version including the 
limited-area mesh option in a newer version of the model. For this phase of the project, however, the two 
pre-defined MPAS meshes used by Campbell et al. (2020) were employed: ∼92-km global mesh that is re-
fined to ∼25-km over the CONUS, and ∼46-km global to ∼12-km CONUS mesh.

For the comparative WRF simulation a 12-km CONUS domain used for retrospective modeling at the U.S. 
EPA for the last decade (Appel et al., 2017; Gilliam & Pleim, 2010; U.S. EPA, 2019) was employed. The phys-
ics options and other aspects of the simulations were synchronized as much as possible between MPAS and 
WRF as documented in Table 1. Base versions of the model codes used for the simulations are MPASv5.2 
and WRFv4.0. The 50 MPAS and 35 WRF vertical levels are defined in Figure 1. Some early internal testing 
of MPAS indicated a general lack of sensitivity to the vertical grid structure on near-surface meteorology 
and precipitation even prior to the FDDA implementation. FDDA by design tends to suppress differences 
that vertical grid structure could cause, at least in the state variables that are nudged, so it is not expected 
that the different vertical level structure between the models would impact results.

Both models use the RRTMG shortwave and longwave radiation schemes (Iacono et al., 2008). The Ka-
in-Fritsch 2 (KF2, Kain, 2004) convective parameterization scheme was used in both, and MPAS was modi-
fied to include the same subgrid cloud feedback to the radiation (Alapaty et al., 2012; Herwehe et al., 2014) 
used in WRF. Scale-aware convective schemes are gaining traction in multiscale modeling systems such 
as MPAS, but we elected to use the KF2 scheme because it has been a routine setting. Furthermore, initial 
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Model run identification

Settings WRF12 MPAS12 MPAS25 MPASOG MPASNOAH

CONUS grid spacing (km) 12 12 25 12 12

Global grid spacing (km) None 46 92 46 46

Microphysics Morrison WSM6 WSM6 WSM6 WSM6

Subgrid Convection Kain-Fritsch Kain-Fritsch Kain-Fritsch Kain-Fritsch Kain-Fritsch

Radiation (SW/LW) RRTMG RRTMG RRTMG RRTMG RRTMG

Boundary Layer ACM2 ACM2 ACM2 ACM2 YSU

Land-Surface Pleim-Xiu Pleim-Xiu Pleim-Xiu Pleim-Xiu NOAH/MOSAIC

FDDA OG-NAM12 GFS28 GFS28 GFS28 GFS28

Soil Nudging OG-NAM12 GFS28/NAM12 GFS28/NAM12 GFS28/OG-NAM12 none

Landuse data set NLCD40 NLCD40 NLCD40 NLCD40 MODIS20

CONUS, conterminous United States; FDDA, four-dimensional data assimilation; MPAS, Model for Prediction Across Scales; RAOB, Radiosonde observations; 
WRF, Weather Research and Forecasting model.

Table 1 
Model Configuration of Main MPAS and WRF Simulations
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testing of convective schemes and microphysics in MPAS (Herwehe et al., 2018) identified the KF2 with 
Weather Research Forecasting single-moment 6-class microphysics schemes (WSM6) as the combination 
with the least error and bias in terms of surface meteorology, precipitation and surface shortwave radiation.

The most notable difference in the physics choices between MPAS and WRF was the choice of microphys-
ics. The Morrison double-moment microphysics (Morrison et al., 2009) has been used for many years in 
WRF, but it was not available in MPAS, so the single-moment WSM6 (Hong and Lim, 2006) was chosen, 
again based on Herwehe et al. (2018). We do present a supplemental sensitivity using WRF that details the 
impact that the Morrison and WSM6 options likely have on model performance.

The P-X LSM, ACM2 PBL, and Pleim surface layer schemes were identical in both modeling systems af-
ter the implementation into MPAS. Four main MPAS sensitivities (MPAS12, MPAS25, MPASOG, and 
MPASNOAH) and one baseline WRF simulation (WRF12) will be the focus of the evaluation (Table 1). 
MPAS12 and MPAS25 are the same except the mesh is coarser in the MPAS25. MPAS12 and MPASOG are 
the same except the soil nudging inputs in MPASOG are sourced directly from WRF12 as will be described 
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Figure 1.  Approximated model vertical level heights (m) at sea level.
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in Section 2.3. The MPASNOAH simulation is from Campbell et al. (2020) with physics options: Noah LSM 
(Chen & Dudhia, 2001) with tiled land use, Yonsei University PBL (YSU; Hong et al., 2006) and standard 
Monin-Obukhov surface layer similarity schemes. This was included as the most likely alternative LSM/
PBL choice available in MPAS.

In this study, MPAS was modified to leverage a land use data set developed by the U.S. EPA for WRF mod-
eling. In this data set (NLCD40), the 20-class, high resolution 2011 National Land Cover Data set (NLCD) 
was applied over the CONUS, while the global 20-class MODIS land use was used elsewhere. NLCD40 was 
used for all simulations including supplementary sensitivities.

2.2.  FDDA Configuration

For the 2016 annual MPAS simulation, FDDA based on analysis nudging (Bullock et al., 2018) leveraged 
analyses from the National Centers for Environmental Prediction (NCEP) Global Forecast System’s (GFS) 
Data Assimilation System (GDAS). GDAS starts with a 6-h forecast and blends observations using three-di-
mensional variational data assimilation (3DVar) with Gridpoint Statistical Interpolation (GSI) to produce 
an analysis where most observations fit within specified error bounds. GSI essentially provides a statistically 
optimized description of the atmosphere on a specified grid (Wu et al., 2002). As Table 1 outlines, the nudg-
ing/FDDA of all MPAS simulations (MPAS12, MPAS25, MPASOG, and MPASNOAH) used the ∼28-km 
GSI/GFS-base analyses simply labeled GFS28. Horizontal wind, temperature, and water vapor mixing ratio 
were nudged above the PBL with nudging coefficients of 1.0 × 10−14 s−1, 1.0 × 10−14 s−1, and 1.0 × 10−15 s−1, 
respectively, for all MPAS and WRF simulations (Spero et al., 2018). These nudging coefficients have been 
standard in almost all U.S. EPA modeling of the last decade. MPAS simulations used 6-h GFS28 analyses.

Table  1 indicates that WRF12 was nudging toward 3-h NAM-based 12-km analyses (NAM12) using the 
label OG-NAM12. A WRF pre-processor tool Obsgrid (OG) was leveraged as typically done for U.S. EPA 
simulations. Obsgrid ingests an analysis product like NAM12 that has been interpolated to the WRF grid 
and reintroduces surface and upper-air observations resulting in the reanalysis OG-NAM12. This Obsgrid 
utility is not available in MPAS, so the lack thereof will have some impact on the evaluation of upper-air me-
teorology in Section 3.4. In order to elucidate this impact, a supplementary sensitivity was done within WRF 
where the GFS28 and OG-NAM12 FDDA inputs and effect on model performance is detailed (Figure S4).

2.3.  Indirect Soil Nudging and Snow Cover

The most powerful aspect of the P-X LSM for retrospective air quality modeling is the indirect soil moisture 
and temperature nudging (Pleim & Gilliam, 2009; Pleim & Xiu, 2003). Gridded analyses of 2-m temperature 
and moisture are compared to the model-estimated temperature and moisture at each time step for the in-
direct soil nudging calculations. This nudging alters the soil moisture and temperature, which repartitions 
surface fluxes and adjusts the near-surface meteorology toward the guiding analyses.

Table 1 outlines the soil nudging settings of all simulations. Since the GFS analysis was resolved at ∼28-km 
and the smallest MPAS polygon used was ∼12-km, the soil nudging target files for MPAS used a process that 
blends two analyses: a coarse analysis was used on the global MPAS grid (GFS28), while a higher-resolution 
regional analysis (NAM12) was applied in the focal area that resulted in merged GFS28/NAM12 global anal-
ysis. Both MPAS12 and MPAS25 used the same GFS28/NAM12 soil nudging inputs to the P-X LSM. For the 
WRF12 simulation, Table 1 shows an analysis OG-NAM12 was used, which is the surface nudging file from 
Obsgrid that blended surface observations with the NAM12 analysis on the WRF12 grid.

Gilliam and Pleim (2010) stressed that more refined soil nudging inputs via Obsgrid, or any other analysis 
product for that matter, will improve the simulated 2-m temperature. As a result, the difference in soil nudg-
ing inputs between WRF and MPAS will have some impact on results. We were able to test the impact of 
Obsgrid on simulated near-surface meteorology in MPAS that also demonstrates the effectiveness of the PX 
LSM soil nudging scheme. This MPASOG simulation (Table 1) was achieved by producing soil nudging in-
puts using nearest-neighbor interpolation of the WRF12 inputs from Obsgrid (OG-NAM12) to the MPAS12 
grid points that fell within the WRF12 domain.
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P-X LSM does not explicitly simulate snow cover. Rather, snow cover was specified by using an analysis 
of snow depth that typically accompanies the indirect soil nudging fields. Other LSMs like Noah track 
snow processes with physical formulations that consider accumulation, melting, sublimation, etc. To ac-
commodate the P-X LSM soil nudging and snow cover, MPAS input processing for time-varying sea surface 
temperature was replicated to produce a time-varying input file with 2-m temperature, 2-m moisture, and 
snow depth. For the MPAS12, MPAS25, MPASOG simulations, the GFS28 analysis was the source of snow 
cover. For the WRF12 simulation and all supplementary sensitivities the snow cover was extracted from the 
NAM12 analysis. A visual comparison of the snow cover fields did not uncover differences we expect would 
impact the model performance statistics.

2.4.  Model Evaluation

The Atmospheric Model Evaluation Tool (AMET; Appel et al., 2011; Gilliam et al., 2005) has been used to 
evaluate meteorology models used in air quality simulations at the U.S. EPA. AMET was originally devel-
oped to provide routine evaluations of the MM5, then adapted for WRF and, more recently, for the MPAS 
model. The tool uses observations from the Meteorological Assimilation and Data Ingest System (MADIS) 
which archives these meteorological data for the U.S. and more recently across the globe. The Parameter-el-
evation Relationships on Independent Slopes Model (Daly et al., 2008; PRISM Climate Group, 2015) data 
set was used by AMET to evaluate the model precipitation. The bilinearly interpolation option in AMET 
was used to pair MADIS surface data with the models. Upper-air soundings (i.e., Radiosonde observations 
(RAOB)) and precipitation were paired using nearest neighbor. For this investigation, we used AMET to 
examine hourly surface meteorology, hourly global downward shortwave radiation at the surface, seasonal 
precipitation, and upper-air meteorology using the standard twice-daily RAOB soundings.

3.  Results
3.1.  Surface Meteorology

Four key meteorological variables are examined in this analysis (Table 2): 2-m temperature (T2), 2-m water 
vapor mixing ratio (Q2), 10-m wind speed (WS10) and direction (WD10). Since WRF12 uses a limited-area 
CONUS 12-km domain, the MPAS12, MPAS25, MPASOG and MPASNOAH errors are computed using only 
observation sites within the WRF12 domain. Furthermore, the statistics shown here are limited to root-
mean squared error (RMSE) or mean absolute error (MAE) because bias can be misleading when high bias 
in some areas, or times of the day, can offset low bias as an example.

In our experience, T2 is a primary indicator of model performance. Table 2 shows that the monthly T2 RMSE 
of the benchmark WRF12 aligns with accepted error levels in retrospective modeling (U.S. EPA,  2019). 
WRF12 domain averaged errors reach a maximum of around 2.35 K during colder months and fall below 
2.00 K during warmer months. T2 RMSE by region and season in WRF12 are generally comparable to the 
U.S. EPA report although the data there was subset by climate region. The two reasons U.S. EPA (2019) was 
not explicitly used here as a benchmark: It was (1) an older version of WRF (v3.8) and (2) used lightning 
assimilation that has not been implemented in MPAS, which was shown to significantly improve surface 
meteorology and precipitation (Heath et al., 2016).

MPAS12 has higher T2 error every month: An increase over WRF12 of ∼0.20 K in cooler months to 0.10 K 
or less during the warmer months. A main configuration difference between MPAS12 and WRF12 is the 
absence of Obsgrid in MPAS as detailed in Section 2.3. The MPASOG sensitivity incrementally improves 
upon MPAS12 and compares favorably to WRF12. Again, when the same Obsgrid inputs from the WRF12 
simulation are used in the MPASOG over the CONUS, T2 errors are slightly lower than WRF12 during the 
six warmer months of the year and only slightly higher the other six months. MPASOG has a consistently 
lower RMSE of T2 than MPAS12 by 0.10–0.15 K confirming the efficacy of Obsgrid and response of the soil 
nudging scheme to refined inputs.

MPAS25, where the finest resolution over the CONUS is 25-km, has a slightly higher T2 error than MPAS12, 
an increase of about 0.10 K on average each month. This indicates that the finer resolution of the 12-km 
mesh offers some limited benefit. The implementation of the P-X LSM and ACM PBL in MPAS12 greatly 
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improves the verification of T2 compared with MPASNOAH configuration, which have monthly T2 errors 
that are 0.50–1.00 K higher depending on the time of year. This shows that soil nudging in P-X LSM is an 
effective option in reducing T2 errors, as was shown in similar comparison of WRF and MM5 in Gilliam 
et al. (2010). The Flux-adjusting Surface Data Assimilation Scheme (FASDAS; Alapaty et al., 2008) is a rela-
tively new option linked to the NOAH LSM in WRF, but it is unavailable in MPAS. While it is a fundamen-
tally different nudging scheme (direct nudging of the atmosphere) than the P-X LSM indirect soil nudging, 
FASDAS is sure to improve MPAS performance of retrospective simulations if implemented. While the soil 
nudging is likely the main attribution of differences in model performance, we do not discount that the PBL 
and surface layer scheme are different and could have some impact, although not explored.

Figure 2 provides another examination of the T2 RMSE using a daily timeseries for 2016. The MPASNO-
AH is clearly the least precise model, while all P-X LSM-based simulations with soil nudging are more 
similar in terms of performance. Again, the primary reason is the lack of surface/soil nudging (e.g., FAS-
DAS) in MPASNOAH as previously indicated. The MPASNOAH is closer to the P-X LSM simulations in the 
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T2 RMSE (K) Q2 RMSE (g kg−1)

Month WRF12 MPAS12 MPAS25 MPASOG MPASNOAH Month WRF12 MPAS12 MPAS25 MPASOG MPASNOAH

1 2.30 2.51 2.59 2.40 3.45 1 0.69 0.74 0.79 0.73 0.75

2 2.28 2.47 2.52 2.33 3.56 2 0.80 0.90 0.90 0.88 0.86

3 2.14 2.28 2.34 2.17 3.00 3 1.02 1.14 1.16 1.11 1.07

4 2.02 2.15 2.22 2.06 2.63 4 1.15 1.28 1.26 1.23 1.28

5 2.05 2.16 2.27 2.08 2.63 5 1.39 1.46 1.43 1.43 1.53

6 2.05 2.11 2.21 2.02 2.78 6 1.73 1.88 1.85 1.84 2.11

7 2.08 2.17 2.24 2.06 2.97 7 1.92 2.09 2.05 2.04 2.43

8 1.96 2.03 2.11 1.93 2.91 8 1.76 1.93 1.88 1.87 2.43

9 1.93 2.00 2.18 1.88 2.68 9 1.53 1.66 1.57 1.65 2.13

10 2.01 2.09 2.17 1.99 2.47 10 1.17 1.21 1.17 1.21 1.46

11 2.11 2.23 3.31 2.10 2.59 11 0.97 0.97 0.97 1.00 1.13

12 2.35 2.55 2.60 2.41 3.15 12 0.79 0.80 0.80 0.79 0.86

WS10 RMSE (m s−1) WD10 MAE (°)

Month WRF12 MPAS12 MPAS25 MPASOG MPASNOAH Month WRF12 MPAS12 MPAS25 MPASOG MPASNOAH

1 1.73 1.75 1.79 1.73 1.87 1 26 26 26 26 26

2 1.80 1.81 1.79 1.80 1.99 2 25 25 27 25 26

3 1.80 1.81 1.82 1.79 1.93 3 27 27 27 27 28

4 1.75 1.76 1.78 1.74 1.86 4 27 27 28 27 28

5 1.69 1.69 1.69 1.68 1.77 5 31 30 31 30 32

6 1.64 1.64 1.66 1.64 1.74 6 32 31 32 31 33

7 1.64 1.65 1.66 1.64 1.75 7 34 33 34 34 35

8 1.56 1.56 1.58 1.56 1.67 8 34 33 34 33 35

9 1.56 1.56 1.63 1.56 1.69 9 30 30 31 30 31

10 1.67 1.66 1.70 1.65 1.78 10 27 26 27 26 27

11 1.65 1.70 1.70 1.65 1.81 11 26 26 27 26 27

12 1.84 1.85 1.87 1.86 2.01 12 25 25 26 25 26

Errors are provided for 2-m temperature (T2), 2-m water vapor mixing ratio (Q2), 10-m wind speed (WS10), and 10-m wind direction (WD10). RMSE is listed 
for T2, Q2, and WS10, and mean absolute error (MAE) for WD10.
MPAS, Model for Prediction Across Scales; RSME, Root Mean Square Error; WRF, Weather Research and Forecasting model.

Table 2 
Monthly Error Statistics for Simulations Identified in 1.
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transition seasons but has notably larger error in the winter and summer. WRF12 and MPAS12 are most 
similar during warmer months. Using Obsgrid inputs (MPASOG) clearly lowers daily RMSE and approach-
es WRF12 or lower. Starting in May and ending in November, MPASOG is consistently at WRF12 levels or 
lower in terms of daily error. MPAS12 verifies slightly better than MPAS25 throughout the year except for a 
few days, again showing a positive response of the modeling to a reduction in grid size.

Q2 is another proxy of overall model performance (Table 2 and Figure 3). As with T2, the WRF12 has lower 
Q2 RMSE than MPAS12. Differences between all simulations including MPASNOAH are less during some 
of the cooler months because water vapor mixing ratio is naturally smaller in the winter on average. In the 
summer, the WRF12 has a lower RMSE by 0.10–0.15 g kg−1, when compared to MPAS12 and those differ-
ence decreases slightly when Obsgrid inputs are used (MPASOG). The July–September period represents 
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Figure 2.  Daily RSME of 2-m temperature (K) for each model simulation using observational data over the CONUS. Each panel represents a three-month 
period: January–March (top left), April–June (top right), July–September (bottom left), and October–December (bottom right). CONUS, conterminous United 
States; RSME, Root Mean Square Error.

Figure 3.  Same as Figure 2, but for 2-m water vapor mixing ratio (g kg−1).
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the largest difference in Q2 RMSE between the WRF12 and MPAS12/MPASOG simulations. MPASNOAH 
is the outlier in the summer months with errors 0.50 g kg−1 greater than the other simulations that have the 
advantage of indirect soil moisture and temperature nudging.

Monthly RMSE of 10-m wind speed (WS10) and MAE of wind direction (WD10) are more comparable be-
tween the simulations (Table 2). MAE is used for WD10 because large wind direction deviations in frequent 
light wind conditions skew the RMSE. Throughout 2016, the difference in RMSE of WS10 between WRF12 
and MPAS12 is capped at 0.05 ms−1 in November, but essentially the same for the other months. MPASOG 
essentially has the same level of wind error as WRF12. Reducing MPAS mesh size over the CONUS from 
25 to 12 km (MPAS25 vs. MPAS12) negligibly impacted these statistics. MPASNOAH has ∼0.10 ms−1 higher 
RMSE than the MPAS P-X configurations. WD10 MAE is nearly identical across all simulations. As one 
would expect, the WD10 errors increase in the summer as the large-scale flow weakens and surface winds 
decrease, yielding more instances of light and variable winds.

The spatial distribution of errors in the winter (January–March) and summer months (July–September) 
of the MPASOG simulation along with the RMSE difference with the WRF12 (center row) and MPAS12 
(bottom row) are shown in Figure 4. MPASOG errors are presented in the top row since it most closely 
matches the soil nudging in WRF12, and as previous analysis showed has the lowest errors of the MPAS 
configurations. As already established, the MPASOG T2 errors are generally within expected performance 
levels when all CONUS observations are considered. Error difference plots shows how model performance 
differs regionally between simulations.

In the winter, MPASOG errors are between 1.5 and 2.5 K outside of areas with more complex topography 
where errors are around 3.0 K (e.g., Intermountain West). MPASOG performs quite well on the West Coast, 
southern U.S. and Ohio River Valley with RMSE values between 1.5 and 2.0 K. Difference of RMSE T2 be-
tween MPASOG and WRF12 in the winter (center-left panel of Figure 4) reveal that WRF12 performs best 
in the Intermountain West, northern Plains, Midwest and Canada where WRF12 errors are 0.2–0.5 K lower 
than MPASOG. MPASOG generally performs best in the southern and eastern parts of the CONUS where 
errors are 0.1–0.4 K lower than WRF12. Overall MPASOG has lower error at a 42% minority of observation 
sites.

A supplemental sensitivity of microphysics (Morrison vs. WSM6) indicates that at least in WRF the Morri-
son choice leads to lower shortwave radiation at the surface in January 2016 as shown in Figure S2. The sun 
angle is much lower in the north-central U.S. during the winter where WRF12 has the lowest T2 error so 
this difference in shortwave radiation at the surface in Figure S2 is a larger fraction of the average radiation 
in northern parts of the U.S. This is also an area of persistent snow cover that interrupts the effectiveness 
of the soil nudging algorithm in the P-X LSM. Figure S3 is the difference in T2 errors from this supple-
mental sensitivity (Morrison-WSM6). The T2 error difference pattern in Figure S3 makes it clear that the 
larger MPASOG T2 error in the north-central U.S. relative to WRF12 is driven by the WSM6 microphysics 
parametrizations.

It is shown in lower-left panel of Figure 4 that the Obsgrid inputs used in MPASOG, rather than the NAM12-
based inputs in MPAS12, improve temperature error at 71% of observation sites (bottom left panel) during 
winter months and 64% of sites during the summer months (bottom right panel). MPASOG has errors that 
are 0.1–0.4 K lower with some scatter sites indicating errors are as much as 1.0 K lower with the improved 
soil nudging inputs.

During summer, the MPASOG T2 RMSE is below 2 K outside of the complex terrain of the Intermountain 
West where errors range from 2.0 to 3.0 K. In this simulation, the number of sites with lower T2 error rel-
ative to WRF12 increases from 42% in winter to 65% in the summer. Comparing the spatial difference of 
MPASOG and WRF12 (center right panel of Figure 4) indicates where the Obsgrid inputs had the most im-
pact on T2. Improvements in T2 error are most evident in the central and eastern U.S. It may be coincidence, 
but these areas generally align with the wettest parts of the eastern U.S. as discussed next.
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3.2.  Precipitation

Precipitation is another common and important component of an evaluation, especially when migrating 
to a new model. Poorly simulated precipitation signals that the model has an underlying deficiency. If 
the precipitation is well characterized, confidence in that model and downstream environmental modeling 
systems like CMAQ increases because precipitation has historically been a source of large uncertainties.

Figure 5 presents the seasonal observed PRISM precipitation and the model totals of MPAS12 and WRF12. 
Both models represent the precipitation patterns well for the January–March 2016 quarter of the year. The 
spatial distribution and accumulations over the wetter parts of the western U.S. where orographic forcing 
dominates are captured by both models. The highest accumulations in the southeastern U.S. are underes-
timated by the models but amounts in other areas of the eastern U.S. are comparable to PRISM. Figure 6 
and Table 3 provide additional metrics on the model performance with spatial normalized differences (by 
PRISM), MAE, bias, and correlation based on land-based grid cells in the CONUS. For January–March (Ta-
ble 3), MPAS12 has a MAE of 40 mm, WRF12 a MAE of 47 mm, and MPAS25 43 mm. MPAS12 has a bias of 
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Figure 4.  RMSE of 2-m temperature for January–March (top left) and July–September (top right) for the MPASOG simulation. Error difference with 
comparative simulations are depicted in the two rows below. MPASOG-WRF12 for January–March and July–September (center row). MPASOG-MPAS12 for 
January–March and July–September (bottom row). MPAS, Model for Prediction Across Scales; RSME, Root Mean Square Error; WRF, Weather Research and 
Forecasting model.
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−4 mm, WRF12 + 5 mm and MPAS25 -27 mm. Spatial correlation of this winter period is about the same 
in all configurations where the correlations greater than 0.90 indicate the models represent precipitation 
patterns with coherency.

The normalized precipitation bias is presented in Figure 6 as the seasonal difference between the models 
and PRISM divided by the total PRISM precipitation. This metric needs to be interpreted with caution in 
dry areas where small differences between the models and observations and/or low observed precipitation 
can drive high normalized bias. A masked was applied where seasonal PRISM totals are less than 50 mm to 
eliminate more arid regions based on the upper range suggested by Laity (2009). In areas of higher observed 
precipitation over the January–March period, the normalized precipitation biases are generally ±20%. Com-
paring MPAS12 and WRF12 corroborates Table 3, as MPAS12 has a slightly lower bias. One area of the U.S. 
where MPAS12 clearly has less bias is the intermountain western and north-central U.S.

Over the April–June period, MPAS12 and WRF12 compare well with PRISM. Western U.S. precipitation is 
well simulated, though rainfall is lower than in winter. High springtime precipitation along the Gulf Coast 
is represented by both models, as are locally wet areas in West Virginia, coastal North Carolina and Florida. 
Table 3 shows MPAS12 performs best with the MAE of 51 mm as compared to 58 mm in WRF12. While the 
correlation was the same between models in the winter, the correlation of MPAS12 in spring is 0.85 while 
it was 0.80 in WRF12. The grid bias is −20 mm in WRF12, -3 mm in MPAS12 and -27 mm in MPAS25. This 
bias difference between MPAS12 and WRF12 is evident in the normalized bias in Figure 6. For example, 
areas that have a negative bias in WRF12 are more biased than in MPAS12 (e.g., Texas).

July–September is the Northern Hemisphere summer when much of the southern and eastern U.S. experi-
ences a more subtropical climate, characterized by high near-surface temperatures, water vapor mixing ra-
tio and frequent diurnally driven convection. This weather regime is more difficult to simulate than precip-
itation driven by larger-scale mid-latitude weather systems that dominate in winter and transition seasons. 
The two models generally represent the precipitation well, from minimal precipitation in California to over 
600 mm along the coast of the southeastern quadrant of the U.S (Figure 5). Higher observed precipitation 
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Figure 5.  Seasonal precipitation totals (mm) from the observation-based PRISM data (left), MPAS12 (center) and WRF12 (right). MPAS, Model for Prediction 
Across Scales; PRISM, Parameter-elevation Relationships on Independent Slopes Model; WRF, Weather Research and Forecasting model.
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in the U.S. states of Iowa, Minnesota, and Wisconsin is clearly underestimated by the models. This broad 
area with greater than 500 mm precipitation is underestimated by the models that simulated around 200–
350 mm. The normalized precipitation bias (Figure 6) indicates that MPAS12 performs somewhat better 
with respect to PRISM. Table 3 statistics reveal MPAS12 has a MAE of 69 mm, while WRF12 has a MAE of 
77 mm, and MPAS25 has a MAE of 81 mm. The dry bias of MPAS12 is half of that in WRF12 at −15 versus 
−29 mm, supporting the differences in the normalized bias map (Figure 6). The MPAS12 correlation is 
higher at 0.82 compared to 0.78 in WRF12 and MPAS25.

Over the last three months of 2016, the models capture the orographically forced precipitation well in the 
western U.S. as done for the winter period. In October 2016, Hurricane Matthew passed along the southeast-
ern coast of the U.S., depicted by the streak of high precipitation in PRISM (Figure 5). MPAS12 simulated 
the amount and location of precipitation from Matthew with better detail than WRF12. Both models under-
estimate precipitation from coastal areas of the Gulf of Mexico to Virginia. The two models simulate around 
50–100 mm of precipitation, while more than double that amount was observed (150–200 mm). Normalized 
precipitation difference (Figure 6) shows that MPAS12 has a generally lower bias across the domain. Table 3 

GILLIAM ET AL.

10.1029/2020JD033588

12 of 22

Figure 6.  Normalized model bias of MPAS12 (left) and WRF12 (right) seasonal precipitation using observation-based PRISM. Mask applied (white) where 
PRISM totals are less than 50 mm. MPAS, Model for Prediction Across Scales; PRISM, Parameter-elevation Relationships on Independent Slopes Model; WRF, 
Weather Research and Forecasting model.
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shows the MAE of the MPAS12 is slightly lower than WRF12 (43  vs. 46 mm, respectively), but over these 
three months unlike the rest of the year, the grid bias is slightly higher in MPAS12.

Annual statistics (Table 3) provide a higher-level summary of the model performance. Mean absolute error 
is 137 mm in MPAS12, 161 mm in WRF12, and 175 mm in MPAS25. Bias in MPAS12 is slightly lower, and 
correlation is slightly higher than WRF12. Reducing the CONUS grid mesh in MPAS from 25 to 12 km im-
proves the annual precipitation as MAE drops from 175 to 137 mm and bias from −116 to −42 mm.

The attribution of this improve precipitation statistics in MPAS is not clear. The microphysics (WSM6 and 
Morrison) and FDDA drivers (GFS28 vs. OG-NAM12) are two potential differences that may impact pre-
cipitation. Table S1 leverages two supplemental sensitivities that test these options within the WRF model. 
Neither of these differences lead to much contrast in the verification of precipitation. The use of WSM6 and 
Morrison in WRF has almost no impact on the grid MAE, bias or correlation. The use of GFS28 analyses in 
FDDA has a slight impact in July, but at least in WRF make the precipitation statistics slightly worse than 
when the OG-NAM12 drive the FDDA. We have yet to test vertical layering structure, but MPAS does have 
50 vertical layers up to 30-km and resolves the upper troposphere and tropopause better as show in Figure 1. 
Another untestable difference is global nature of MPAS with no lateral boundaries unlike WRF. In any case, 
these statistics make a clear case that MPAS with these new FDDA and physics options has parity or better 
with the long-used WRF model in terms of representing historical precipitation totals.
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Grid mean absolute error (mm)

Months WRF12 MPAS12 MPAS25

JFM 47 40 43

AMJ 58 51 56

JAS 77 69 81

OND 46 43 51

Annual 161 137 175

Grid mean error/Bias (mm)

Months WRF12 MPAS12 MPAS25

JFM 5 −4 −27

AMJ −20 −3 −27

JAS −29 −15 −24

OND −14 −21 −39

Annual −57 −42 −116

Grid correlation

Months WRF12 MPAS12 MPAS25

JFM 0.93 0.93 0.93

AMJ 0.80 0.85 0.84

JAS 0.78 0.82 0.78

OND 0.91 0.92 0.92

Annual 0.89 0.92 0.90

MPAS, Model for Prediction Across Scales; PRISM, Parameter-elevation Relationships on Independent Slopes Model; WRF, Weather Research and Forecasting 
model.

Table 3 
Seasonal and Annual Precipitation Statistics for the MPAS12, MPAS25 and WRF12 Simulations Based on the Observation-Based PRISM Data
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3.3.  Radiation

Global downward shortwave radiation at the surface is compared against the Baseline Surface Radiation 
Network (BSRN; Ohmura et al., 1998). The observed BSRN data are acquired and released at a 1 min av-
erage but compared to the models using time window averaging (±10 min) centered at the model output 
time step. Observations from BSRN sites across the CONUS are used to compute error, bias, and variability 
of the radiation for 2016.

Figures 7 and 8 are provided to show simulated shortwave radiation statistics with spatial and diurnal plots. 
Statistics presented are error, bias, and variability differences (σm-σo), where σm is the standard deviation of 
the model timeseries, and σo represents the BSRN measurements. WRF12 has the lowest MAE (Figure 7). 
The two MPAS simulations are similar, but the MPAS12 has a slightly higher error than MPAS25. Diurnal 
plots in Figure 7 show these differences with more distinction. Individual site statistics are provided along 
with the average hourly statistics of each model based on the 10 sites in the CONUS. Statistics at each site 
are adjusted by centering around local solar noon since solar angle has an inherent impact on the metrics. 
Diurnal MPAS12 errors quickly increase beyond those in MPAS25 and WRF12 until well into the afternoon 
when the two MPAS simulations are comparable and become slightly lower than WRF12 errors.

Bias of simulated radiation generally follows the performance rankings of the models in terms of error lev-
els. There are several sites where spatial bias indicates MPAS12 is lower than MPAS25, but MPAS12 is gen-
erally the poorest performing model. The diurnal bias (Figure 7) shows a positive bias throughout the day 
in all models, prompting several supplemental sensitivities. The systematic positive model bias in all simu-
lations signifies too few simulated clouds or an optical thickness quality that is not attenuating enough solar 
radiation. MPAS12 and MPAS25 also have a higher bias early in the day but slightly lower bias compared 
with WRF12 in the afternoon. This may suggest a difference in how diurnally driven clouds are represented.

Two key differences in MPAS and WRF runs may explain the generally higher bias in MPAS. (1) MPAS12 
and WRF12 are driven by FDDA using different analyses (GFS28 vs. OG-NAM12) where the moisture nudg-
ing, for example, can have a large impact on clouds (Spero et al., 2014, 2018). 2) The differing microphysics 
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Figure 7.  Spatial plots of mean absolute error (MAE), mean error (BIAS), and standard deviation difference (σm-σo) between the models and the observed 
downward global shortwave radiation at the surface. Statistics are valid for 2016 and presented for the MPAS12 (top), WRF12 (middle) and MPAS25 (bottom) 
simulations. MPAS, Model for Prediction Across Scales; WRF, Weather Research and Forecasting model.
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schemes where, again, WRF12 used Morrison and MPAS12 used the WSM6 scheme. The T2 error analysis 
(Figure S3) identified the choice of microphysics as a main reason for differences in the T2 errors in the win-
ter. Figure S1 shows that averaged downward shortwave radiation at the surface is constantly lower across 
the CONUS in the WRF12-Morrison simulation than the MPAS12-WSM6. The supplementary sensitivity of 
the Morrison and WSM6 microphysics in WRF attributes the lower shortwave radiation to a more attenua-
tive Morrison scheme (Figure S2) and that likely extends to MPAS. Figure S4 confirms that the use of WSM6 
results in higher shortwave radiation bias at the surface than the Morrison scheme during the first half of 
the day. This impact on radiation is consistent with Morrison et al. (2009) that found the main difference 
between the double and single moment schemes was more stratiform precipitation in Morrison. The use 
of the GFS28 analyses in FDDA has a minor impact, but not as much as the microphysics. Again, Herwehe 
et al. (2018) tested the microphysics and subgrid convective options available in MPAS. The MPAS12 con-
figuration with WSM6 and KF2 had a high bias but was the least biased of the available microphysics and 
subgrid convection combinations.

The standard deviation of the radiation timeseries conveys the variability. The difference between the model 
and observed variability (σm–σo) indicates a model tendency to over or underestimate variability caused by 
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Figure 8.  Diurnal shortwave radiation statistics for the MPAS12 (blue), MPAS25 (red), and WRF12 (black) simulations 
based on 10 observation sites in the CONUS (dots) identified in Figure 7. Average diurnal error, bias and variability 
difference of each model are plotted (lines). CONUS, conterminous United States; MPAS, Model for Prediction Across 
Scales; WRF, Weather Research and Forecasting model.
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clouds. Both models always underrepresent the variability of the observed solar radiation (Figure 7) because 
12-km grid models cannot completely capture the shading from small (sub-grid) clouds. In air quality mod-
eling this deficiency will affect the photochemistry, so these results should be considered in ozone predic-
tions, for example. Figure 8 indicates, as did the MAE, the WRF12 simulation has a smaller difference in 
variability during the middle parts of the day as compared to MPAS12 and MPAS25. The scale reduction in 
MPAS (MPAS12 vs. MPAS25) appears to increase the variability of radiation except early in the day. As with 
bias (Figure S4), the variability difference between the WRF and MPAS simulations is largely explained by 
the different representation in the microphysics schemes. The WSM6 microphysics results in fewer clouds, 
less attenuation of shortwave radiation and less variability at the surface when compared to observations. 
We expect a Morrison microphysics option in MPAS would improve the simulation in these respects.

3.4.  Upper-Air

The evaluation of the simulated upper-air meteorology uses twice-daily rawinsonde soundings of the trop-
ospheric temperature (TEMP), relative humidity (RH) and wind speed/direction (WS and WD). Spatial 
analysis of error (Figure 9), error timeseries (Figure 10), and vertical error profiles (Figure 11) are lever-
aged to understand how these models perform. Figure 9, more specifically, provides the layer average error 
(1,000–200 hPa) of MPAS12 (CONUS area only) and WRF12. Tropospheric TEMP is well-simulated in most 
locations, with RMSE of 0.75–1.25 K. MPAS12 has slightly higher error than WRF12, but TEMP errors near 
1.0 K are close to the average difference between analyses and observations (e.g., the best that can be expect-
ed from a nudged model). Results imply that both MPAS12 and WRF12 approach the level of TEMP error 
in typical weather analyses. This study expands upon Bullock et al. (2018), only conducted for a winter and 
a summer month, by showing that MPAS can now be ran continuously with FDDA with no error growth at 
any level of the atmosphere.

Figure 10 condenses the CONUS-only spatial statistics in Figure 9 to a timeseries comparison of MPAS12 
and WRF12 over the year. The statistics are valid for the 1,000–200 hPa layer that roughly represents the 
troposphere. Focusing on TEMP, the RMSE of the two model runs track each other over the annual cycle. 
RMSE peaks around 1.25 K during the cold parts of the year when the atmosphere over the CONUS has 
large temperature variations because of the active synoptic weather patterns. During the warm season, 
RMSE is minimized at ∼0.8 K in WRF12 and just below 1.0 K in MPAS12, which has a consistently larger 
TEMP error than WRF12.

The lower error in WRF12 may be explained by the difference in nudging inputs. Again, WRF12 used the 
regional OG-NAM12 analysis every three hours that was further refined on the WRF grid using Obsgrid to 
reintroduce RAOB soundings. MPAS12 used inputs directly from the coarser GFS28 analysis at an interval 
of six hours, where RAOB soundings were not blended because Obsgrid was unavailable in MPAS. Thus, 
WRF12 had three distinct advantages: 12-km NAM analyses, Obsgrid, and 3-hourly FDDA inputs. A supple-
mentary simulation was conducted where WRF FDDA was driven by the same GFS28 as used in MPAS12. 
Figure S5 shows the results of this sensitivity that indicate OG-NAM12 FDDA inputs lead to lower errors 
in the upper-air meteorology, consistent with the difference between MPAS12 and WRF12. Nevertheless, 
MPAS12 error levels provide confidence that tropospheric temperature (TEMP) can be well-simulated with-
in about 1 K of the observations on average.

We concede that the evaluation is not fully independent because the soundings were used in both the evalu-
ation and in the analyses (NAM and GFS) used in FDDA. However, Gilliam et al. (2012) explored the use of 
three different wind profile datasets in Obsgrid and found that when one set was withheld for independent 
evaluation and the other two included, wind errors aloft relative to the withheld data set were reduced. It 
is expected that this finding would hold here meaning that blending of RAOB via Obsgrid more generally 
improves the upper-air simulated meteorology, especially considering the even and relatively close spacing 
of RAOB across the CONUS.

Examining temperature and relative humidity as a function of height also shows the same slightly higher 
tropospheric temperature error in MPAS12 as the spatial and timeseries analysis and supplementary sensi-
tivity, but illustrates how these errors are distributed throughout the troposphere (Figure 11). Expectedly, 
because FDDA only operates above the PBL in the free troposphere, both models have higher error near the 
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surface and near the tropopause. The models have a well-simulated TEMP RMSE of around 1.25 K near the 
surface with WRF12 slightly lower. In the middle troposphere, WRF12 has an RMSE that is as low as 0.50 K 
and MPAS12 around 0.70 K. These errors rise to ∼1.50 K around the tropopause and lower stratosphere. 
The interface between the troposphere and stratosphere is characterized by extreme temperature gradients, 
so any small error in tropopause height will cause larger errors in TEMP, like near the land-surface where 
large gradients exist.

The major model performance difference between MPAS12 and WRF12 initially appears to be the RH. 
MPAS12 has larger RH errors over the CONUS compared to WRF12 as indicated in Figures 9–11. Errors are 
10%–15% in WRF12 and 15%–23% in MPAS12 (Figure 9). MPAS12 consistently has a 5% higher RH error 
throughout the year (Figure 10).
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Figure 9.  Spatial RMSE of tropospheric (1,000–200 hPa) temperature (TEMP), relative humidity (RH), wind speed (WS), and wind direction (WD) for the 
MPAS12 (left) and WRF12 (right) simulations, valid for 1 January through 31 December 2016. MPAS, Model for Prediction Across Scales; RSME, Root Mean 
Square Error; WRF, Weather Research and Forecasting model.
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Both models verify somewhat similarly in the lower troposphere (Fig-
ure 11), but the MPAS12 error peaks at 25% at 300 hPa, while the WRF12 
error remains at or below 15%. This significant difference led to a more 
in-depth investigation into the calculation of relative humidity. In MPAS, 
the RH is an internal calculation that is available in the model output. 
WRF does not have this option, so the model evaluation tool used here, as 
well as other WRF post processing tools, compute saturation vapor pres-
sure from the temperature using Clausius-Clapeyron (C-C calc) and then 
saturation mixing ratio using the relationship with the vapor pressure. 
Then, RH as the simple ratio of water vapor mixing ratio and saturation 
mixing ratio.

The sensitivity of this calculation in the mid-to-upper troposphere to low 
temperature, pressures and water vapor is evident in a supplementary 
sensitivity. Figure S6 shows a case where MPAS12 RH was recomputed 
using the same method as in WRF12 (center profile). The mixing ratio 
was not available in the original MPAS12 or MPASOG simulations so we 
could not use that annual simulation. We did have one month (July 2016) 
from a more recent MPAS simulation configured the same as MPAS12. 
Using the external C-C calc when computing MPAS errors leads to much 
different error profiles (MPAS Internal vs. MPAS C-C calc). Furthermore, 
Figure S6 shows MPAS and WRF are more similar when RH is computed 
external of the model using the C-C-based calculation. MPAS even has 
slightly lower errors throughout the profile. It is presumed the internal 
calculation of MPAS is more representative of grid-scale microphysics 
and feedback from the subgrid convective scheme, but more investigation 
is needed. At the very least, any model comparisons should be consistent. 
We typically look at water vapor mixing ratio since it is independent of 
temperature, but the MADIS observation data set only has relative hu-
midity, so conversion using the same C-C-based methodology in reverse 
would still be an issue.

WS and WD errors (Figures 9 and 10) show relatively small differences 
between MPAS12 and WRF12, but MPAS12 has a slightly higher error. 
RMSE of wind speed of the MPAS12 simulation is generally 2.0–2.5 ms−1 
in the summer and 2.5–3.0 ms−1 in the winter. This is an acceptable toler-
ance considering that wind speed averages 30 ms−1 at 500 hPa in the win-
ter and 20 ms−1 in the summer (Ratner, 1956), and 25–50 ms−1 at 300 hPa, 
depending on season. If normalized by wind speed this is a 5%–10% error. 
Similar as temperature, the FDDA constrains error in WS to near the lev-

els in analyses. WD errors are ∼15° in the winter and ∼25° in the weaker wind regimes in summer. MPAS12 
tracks with WRF12, but errors are a few degrees higher. As with TEMP, the slightly higher WS and WD er-
rors can be explained by the FDDA inputs (OG-NAM12 vs. GFS28) that was explored in the supplementary 
sensitivity detailed in Figure S6.

4.  Conclusions
Key meteorological variables modeled by MPAS and WRF were compared with observations to determine 
if MPAS is suitable for retrospective air quality modeling. WRF was used as a benchmark since it is the 
primary meteorological model used to drive U.S. EPA air quality modeling. The MPAS configuration used 
here improves upon Bullock et al. (2018) by the implementation of the P-X LSM and its indirect soil nudg-
ing scheme, as well as the ACM2 PBL scheme and the Pleim surface layer model. MPAS compares well 
with WRF over the CONUS for some variables and certain times of the year, but there are some instances 
where WRF has consistently lower error. Most of the contrast between models is attributed to some options 
in WRF that are not yet available MPAS. The first is the Obsgrid reanalysis tool that enhances the efficacy 
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Figure 10.  RMSE timeseries of temperature (TEMP), relative humidity 
(RH), wind speed (WS), and wind direction (WD) based on all RAOB 
soundings over the CONUS for the 1,000–200 hPa layer of the troposphere. 
Statistics are provided for the MPAS12 and WRF12 simulations. CONUS, 
conterminous United States; MPAS, Model for Prediction Across Scales; 
RAOB, Radiosonde observations; RSME, Root Mean Square Error; WRF, 
Weather Research and Forecasting model.
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of soil nudging and FDDA. The second is the Morrison microphysics scheme that improves the simulated 
clouds, radiation and near-surface temperature. Again, when these are extended to MPAS we expect more 
incremental improvements in the simulated meteorology.

Even with those differences, MPAS errors are comparable to WRF for several atmospheric fields. Precipi-
tation was well simulated by MPAS with lower error and bias over all seasons when compared to WRF12. 
Surface meteorology simulated by MPAS had errors close to WRF levels during cooler parts of the year but 
remained slightly higher. For the warmer half of the year MPAS had temperature errors at or lower than 
WRF when the same soil nudging inputs were used, but moisture errors remained slightly higher. Wind 
speed and direction errors were almost identical in both models over the year.

WRF maintained an advantage in surface radiation because of the availability of the Morrison microphysics 
scheme that verified with lower error, bias and more representative variability. In MPAS, the WSM6 scheme 
resulted in a larger positive bias relative to observations than WRF has with Morrison. MPAS also had less 
variability in the radiation with respect to the observations than WRF, but both models underestimated the 
variability.

Model simulations overall had relatively low error in tropospheric temperature and winds, approaching 
those of the analyses that drove the FDDA. The slightly larger errors in MPAS originate from that advantage 
WRF has with the Obsgrid reanalysis tool. MPAS seemed to deviate from WRF in the evaluation of relative 
humidity. MPAS was biased high in the upper troposphere and had errors ∼25% throughout the troposphere 
compared with ∼15% in WRF. A more detailed look at the RH calculation indicated the higher error in 
MPAS was just a difference in the calculations. When both models used the same calculation of RH, the 
error profiles were similar.

This evaluation and the supplementary sensitivities support using MPAS for retrospective air quality mode-
ling as the level of errors are acceptable for air quality modeling. Microphysics options need to be expanded 
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Figure 11.  RMSE profiles that represent the same layer average timeseries in Figure 10 for the MPAS12 and WRF12 simulations. Temperature (TEMP; left 
two panels) and relative humidity (RH; right two panels) RMSE values are based on all RAOB data in the CONUS for January 1, through December 31, 2016. 
CONUS, conterminous United States; MPAS, Model for Prediction Across Scales; RAOB, Radiosonde observations; RSME, Root Mean Square Error; WRF, 
Weather Research and Forecasting model.
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in MPAS, such as the Morrison scheme to improve the representation of clouds and impact on radiation. 
Additionally, the emerging 3DVar methods in MPAS may improve analyses used for FDDA and soil nudging 
as this modeling matures. MPAS has evolved since the version used here, including porting additional phys-
ics schemes from WRF. These may provide opportunities to further improve the retrospective simulations 
by employing another physics option or improvements of the existing options.

Data Availability Statement
Data used in this analysis are available via the U.S. EPA’s Environmental Data set Gateway (https://doi.
org/10.23719/1519128).
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